Novel Square Error Minimization-Based Multilevel Thresholding Method for COVID-19 X-Ray Image Analysis Using Fast Cuckoo Search

Author:

Naik Manoj Kumar1,Swain Monorama2,Panda Rutuparna3,Abraham Ajith4

Affiliation:

1. Faculty of Engineering and Technology, Siksha O Anusandhan, Bhubaneswar, Odisha 751030, India

2. Department of Electronics and Communication Engineering, Silicon Institute of Technology, Bhubaneswar, Odisha 751024, India

3. Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, Odisha 768018, India

4. Machine Intelligence Research Labs, Auburn, WA 98071, USA

Abstract

Coronavirus outbreaks in 2019 (COVID-19) have been a huge disaster in the fields of health, economics, education, and tourism in the last two years. For diagnosis, a quick interpretation of the COVID-19 chest X-ray image is required. There is also a strong need to find an efficient multiclass segmentation technique for the analysis of COVID-19 X-ray images. Most of the threshold selection techniques are entropy-based. Nevertheless, these techniques suffer from their dependencies on the spatial distribution of grey values. To tackle these issues, a novel non-entropic threshold selection method is proposed, which is the primary key contribution having found a new source of information to the biomedical image processing field. The firsthand Square Error (SE)-based objective function is suggested. The second key contribution is the new optimizer called Fast Cuckoo Search (FCS), which is useful and brings novel ideas into the subject, used to optimize the suggested objective functions for computing the optimal thresholds. To ensure a faster convergence with a quality optimal solution, we include extra exploitation together with a chance factor. The FCS is validated using the well-known classical and CEC 2014 benchmark test functions, which shows a significant improvement over its predecessors—Adaptive Cuckoo Search (ACS) and other state-of-the-art optimizers. Further, the SE minimization-based optimal multilevel thresholding method using the FCS, coined as SE-FCS, is proposed. To experiment, images are considered from the Kaggle Radiography database. We have compared its performances with Tsallis, Kapur’s, and Masi entropy-based techniques using well-known segmentation metrics and achieved a performance increase of 2.95%, 5.51% and 10.50%, respectively. The proposed method shows superiority using Friedman’s mean rank statistical test and ranked first.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3