Time Image De-Noising Method Based on Sparse Regularization

Author:

Wang Xin1,Dong Xiaogang1

Affiliation:

1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, P. R. China

Abstract

The blurring of texture edges often occurs during image data transmission and acquisition. To ensure the detailed clarity of the drag-time images, we propose a time image de-noising method based on sparse regularization. First, the image pixel sparsity index is set, and then an image de-noising model is established based on sparse regularization processing to obtain the neighborhood weights of similar image blocks. Second, a time image de-noising algorithm is designed to determine whether the coding coefficient reaches the standard value, and a new image de-noising method is obtained. Finally, the images of electronic clocks and mechanical clocks are used as two kinds of time images to compare different image de-noising methods, respectively. The results show that the sparsity regularization method has the highest peak signal-to-noise ratio among the six compared methods for different noise standard deviations and two time images. The image structure similarity is always above which shows that the proposed method is better than the other five image de-noising methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Image Super-Resolution and Detail Preservation Technique Based on Non-Local Information;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3