Robust Authentication System with Privacy Preservation for Hybrid Deep Learning-Based Person Identification System Using Multi-Modal Palmprint, Ear, and Face Biometric Features

Author:

Jadhav Sharad B.1ORCID,Deshmukh N. K.1,Pawar Sahebrao B.1

Affiliation:

1. School of Computational Sciences, SRTM University, Nanded 431606, Maharashtra, India

Abstract

Conventional biometric systems are vulnerable to a range of harmful threats and privacy violations, putting the users who have registered with them in grave danger. Therefore, there is a need to develop a Privacy-Preserving and Authenticating Framework for Biometric-based Systems (PPAF-BS) that allows users to access multiple applications while also protecting their privacy. There are various existing works on biometric-based systems, but most of them do not address privacy concerns. Conventional biometric systems require the storage of biometric data, which can be easily accessed by attackers, leading to privacy violations. Some research works have used differential privacy techniques to address this issue, but they have not been widely applied in biometric-based systems. The existing biometric-based systems have a significant privacy concern, and there is a lack of privacy-preserving techniques in such systems. Therefore, there is a need to develop a PPAF-BS that can protect the user’s privacy and maintain the system’s efficiency. The proposed method uses Hybrid Deep Learning (HDL) with palmprint, ear, and face biometric features for person identification. Additionally, Discrete Cosine Transform (DCT) feature transformation and Lagrange’s interpolation-based image transformation are used as part of the authentication scheme. Sensors are used to record three biometric traits: palmprint, ear, and face. The combination of biometric characteristics provides an accuracy of 96.4% for the [Formula: see text] image size. The proposed LI-based image transformation lowers the original [Formula: see text] pixels to an [Formula: see text] hidden pattern. This drastically decreases the database size, thereby reducing storage needs. The proposed method offers a safe authentication system with excellent accuracy, a fixed-size database, and the privacy protection of multi-modal biometric characteristics without sacrificing overall system efficiency. The system achieves an accuracy of 96.4% for the [Formula: see text] image size, and the proposed LI-based picture transformation significantly reduces the database size, which is a significant achievement in terms of storage requirements. Therefore, the proposed method can be considered an effective solution to the privacy and security concerns of biometric-based systems.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3