Improvement in CNN-Based Multifocus Image Fusion Algorithm with Triangulated Fuzzy Filter

Author:

Manchanda Meenu1,Gambhir Deepak2

Affiliation:

1. Vaish College of Engineering, Rohtak, Haryana, India

2. Galgotias College of Engineering and Technology, K.P. - II, Greater Noida, Uttar Pradesh, India

Abstract

Multifocus image fusion is a demanding research field due to the utilization of modern imaging devices. Generally, the scene to be captured contains objects at different distances from these devices and so a set of multifocus images of the scene is captured with different objects in-focus. However, to improve the situational awareness of the captured scene, these sets of images are required to be fused together. Therefore, a multifocus image fusion algorithm based on Convolutional Neural Network (CNN) and triangulated fuzzy filter is proposed. A CNN is used to extract information regarding focused pixels of input images and the same is used as fusion rule for fusing the input images. The focused information so extracted may still need to be refined near the boundaries. Therefore, asymmetrical triangular fuzzy filter with the median center (ATMED) is employed to correctly classify the pixels near the boundary. The advantage of using this filter is to rely on precise detection results since any misdetection may considerably degrade the fusion quality. The performance of the proposed algorithm is compared with the state-of-art image fusion algorithms, both subjectively and objectively. Various parameters such as edge strength ([Formula: see text]), fusion loss (FL), fusion artifacts (FA), entropy ([Formula: see text]), standard deviation (SD), spatial frequency (SF), structural similarity index measure (SSIM) and feature similarity index measure (FSIM) are used to evaluate the performance of the proposed algorithm. Experimental results proved that the proposed fusion algorithm produces a fused image that contains all-in-one focused pixels and is better than those obtained using other popular and latest image fusion works.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3