Early Success Prediction of Indian Movies Using Subtitles: A Document Vector Approach

Author:

Rahul Vaddadi Sai1,Tejas M.1,Prasanth N. Narayanan1,Raja S. P.1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

Scientific studies of the elements that influence the box office performance of Indian films have generally concentrated on post-production elements, such as those discovered after a film has been completed or released, and notably for Bollywood films. Only fewer studies have looked at regional film industries and pre-production factors, which are elements that are known before a decision to greenlight a film is made. This study looked at Indian films using natural language processing and machine learning approaches to see if they would be profitable in the pre-production stage. We extract movie data and English subtitles (as an approximation to the screenplay) for the top five Indian regional film industries: Bollywood, Kollywood, Tollywood, Mollywood, and Sandalwood, as they make up a major portion of the Indian film industry’s revenue. Subtitle Vector (Sub2Vec), a Paragraph Vector model trained on English subtitles, was used to embed subtitle text into 50 and 100 dimensions. The proposed approach followed a two-stage pipeline. In the first stage, Return on Investment (ROI) was calculated using aggregated subtitle embeddings and associated movie data. Classification models used the ROI calculated in the first step to predicting a film’s verdict in the second step. The optimal regressor–classifier pair was determined by evaluating classification models using [Formula: see text]-score and Cohen’s Kappa scores on various hyperparameters. When compared to benchmark methods, our proposed methodology forecasts box office success more accurately.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3