Breast Tumor Detection in MR Images Based on Density

Author:

Shrivastava Neeraj12,Bharti Jyoti1

Affiliation:

1. Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

2. IPSA IES Indore, Madhya Pradesh, India

Abstract

Breast cancer is dangerous in women. It is generally found after the symptoms appear. Detecting the breast cancer at an early stage and understanding the treatment are the most important strategies to prevent death from cancer. Generally, for detection of breast cancer, breast Magnetic Resonance Image (MRI) takes place. It is one of the best approaches to detect tumor in women. In this research paper, a combination of selection methods for seed region growing image segmentation is suggested to detect breast tumor. The suggested method has been divided into following parts: First, the pre-processing of breast image is performed. Second, the automatic threshold for binarization process is calculated. Third, the number of seed points and its position in the breast image are determined automatically using density of pixels value. Fourth, a method for calculation of threshold value is proposed for the purpose of region creation in seed region growing. For the evaluation purpose, the proposed method was applied and tested on the RIDER MRI breast dataset from National Biomedical Imaging Archive (NBIA). After the test was performed, it was observed that proposed algorithm gives 90% accuracy, 88% True Negative Fraction, 91% True Positive Fraction, 10% Misclassification Rate, 94% Precision and 86% Relative Overlap which is better than other existing methods. It not only gives better evaluation measure but also provides segmentation method for multiple tumor detection.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3