Deep Residual Network and Wavelet Transform-Based Non-Local Means Filter for Denoising Low-Dose Computed Tomography

Author:

Sehgal Rashmita1ORCID,Kaushik Vandana Dixit1ORCID

Affiliation:

1. Department of Computer Science, Harcourt Butler Technical University, Nawabganj, Uttar Pradesh, Kanpur 208002, India

Abstract

Image denoising helps to strengthen the image statistics and the image processing scenario. Because of the inherent physical difficulties of various recording technologies, images are prone to the emergence of some noise during image acquisition. In the existing methods, poor illumination and atmospheric conditions affect the overall performance. To solve these issues, in this paper Political Taylor-Anti Coronavirus Optimization (Political Taylor-ACVO) algorithm is developed by integrating the features of Political Optimizer (PO) with Taylor series and Anti Coronavirus Optimization (ACVO). The input medical image is subjected to noisy pixel identification step, in which the deep residual network (DRN) is used to discover noise values and then pixel restoration process is performed by the created Political Taylor-ACVO algorithm. Thereafter image enhancement mechanism strategy is done using vectorial total variation (VTV) norm. On the other hand, original image is applied to discrete wavelet transform (DWT) such that transformed result is fed to non-local means (NLM) filter. An inverse discrete wavelet transform (IDWT) is utilized to the filtered outcome for generating the denoised image. Finally, image enhancement result is fused with denoised image computed through filtering model to compute fused output image. The proposed model observed the value for Peak signal-to-noise ratio (PSNR) of 29.167 dB, Second Derivative like Measure of Enhancement (SDME) of 41.02 dB, and Structural Similarity Index (SSIM) of 0.880 for Gaussian noise.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3