EBMICQL: Improving Efficiency of Blockchain Miner Pools via Incremental and Continuous Q-Learning Framework

Author:

Mulchandani Mona1,Nair Pramod S.1

Affiliation:

1. Computer Science and Engg. Medi-Caps University, Indore, India

Abstract

Blockchain mining pools assist in reducing computational load on individual miner nodes via distributing mining tasks. This distribution must be done in a non-redundant manner, so that each miner is able to calculate block hashes with optimum efficiency. To perform this task, a wide variety of mining optimization methods are proposed by researchers, and most of them distribute mining tasks via statistical request processing models. These models segregate mining requests into non-redundant sets, each of which will be processed by individual miners. But this division of requests follows a static procedure, and does not consider miner specific parameters for set creation, due to which overall efficiency of the underlying model is limited, which reduces its mining performance under real-time scenarios. To overcome this issue, an Incremental & Continuous Q-Learning Framework for generation of miner-specific task groups is proposed in this text. The model initially uses a Genetic Algorithm (GA) method to improve individual miner performance, and then applies Q-Learning to individual mining requests. The Reason for selecting GA model is that it assists in maintaining better speed-to-power (S2P) ratio by optimization of miner resources that are utilized during computations. While, the reason for selecting Q-Learning Model is that it is able to continuously identify miners performance, and create performance-based mining pools at a per-miner level. Due to application of Q-Learning, the model is able to assign capability specific mining tasks to individual miner nodes. Because of this capability-driven approach, the model is able to maximize efficiency of mining, while maintaining its QoS performance. The model was tested on different consensus methods including Practical Byzantine Fault Tolerance Algorithm (PBFT), Proof-of-Work (PoW), Proof-of-Stake (PoS), and Delegated PoS (DPoS), and its performance was evaluated in terms of mining delay, miner efficiency, number of redundant calculations per miner, and energy efficiency for mining nodes. It was observed that the proposed GA based Q-Learning Model was able to reduce mining delay by 4.9%, improve miners efficiency by 7.4%, reduce number of redundant computations by 3.5%, and reduce energy required for mining by 7.1% when compared with various state-of-the-art mining optimization techniques. Similar performance improvement was observed when the model was applied on different blockchain deployments, thus indicating better scalability and deployment capability for multiple application scenarios.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3