Comparison Between an HVS Inspired Linear Filter and the Bilateral Filter in Performing "Vision at a Glance" through Smoothing with Edge Preservation

Author:

Bhattacharjee Debjyoti1,Bakshi Ashish2,Ghosh Kuntal3

Affiliation:

1. Computer and Communication Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India

2. Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India

3. Center for Soft Computing Research, Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India

Abstract

We propose that the Magno (M)-channel filter, belonging to the extended classical receptive field (ECRF) model, provides us with "vision at a glance", by performing smoothing with edge preservation. We compare the performance of the M-channel filter with the well-known bilateral filter in achieving such "vision at a glance" which is akin to image preprocessing in the computer vision domain. We find that at higher noise levels, the M-channel filter performs better than the bilateral filter in terms of reducing noise while preserving edge details. The M-channel filter is also significantly simpler and therefore faster than the bilateral filter. Overall, the M-channel filter enables us to model, simulate and arrive at a better understanding of some of the initial mechanisms in visual pathway, while simultaneously providing a fast, biologically inspired algorithm for digital image preprocessing.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3