Optimization with Deep Learning Classifier-Based Foliar Disease Classification in Apple Trees Using IoT Network

Author:

Sameera K.1,Swarnalatha P.1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore Campus, Near Katpadi Road, Vellore 632014, Tamil Nadu, India

Abstract

The development of any country is influenced by the growth in the agriculture sector. The prevalence of pests and diseases in plants affects the productivity of any agricultural product. Early diagnosis of the disease can substantially decrease the effort and the fund required for disease management. The Internet of Things (IoT) provides a framework for offering solutions for automatic farming. This paper devises an automated detection technique for foliar disease classification in apple trees using an IoT network. Here, classification is performed using a hybrid classifier, which utilizes the Deep Residual Network (DRN) and Deep [Formula: see text] Network (DQN). A new Adaptive Tunicate Swarm Sine–Cosine Algorithm (TSSCA) is used for modifying the learning parameters as well as the weights of the proposed hybrid classifier. The TSSCA is developed by adaptively changing the navigation foraging behavior of the tunicates obtained from the Tunicate Swarm Algorithm (TSA) in accordance with the Sine–Cosine Algorithm  (SCA). The outputs obtained from the Adaptive TSSCA-based DRN and Adaptive TSSCA-based DQN are merged using cosine similarity measure for detecting the foliar disease. The Plant Pathology 2020 — FGVC7 dataset is utilized for the experimental process to determine accuracy, sensitivity, specificity and energy and we achieved the values of 98.36%, 98.58%, 96.32% and 0.413 J, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3