Application of Generative Adversarial Network in Image Color Correction

Author:

Chen Meiling1ORCID,Shi Yao1ORCID,Zhu Lvfen2ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Nanjing Tech University Pujiang Institute, Nanjing 210000, P. R. China

2. School of Intelligent Manufacturing, Nanjing Vocational College of Information Technology, Nanjing 210046, P. R. China

Abstract

The popularity of electronic products has increased with the development of technology. Electronic devices allow people to obtain information through the transmission of images. However, color distortion can occur during the transmission process, which may hinder the usefulness of the images. To this end, a deep residual network and a deep convolutional network were used to define the generator and discriminator. Then, self-attention-enhanced convolution was applied to the generator network to construct an image resolution correction model based on coupled generative adversarial networks. On this basis, a generative network model integrating multi-scale features and contextual attention mechanism was constructed to achieve image restoration. Finally, performance and image restoration application tests were conducted on the constructed model. The test showed that when the coupled generative adversarial network was tested on the Set5 dataset, the image peak signal-to-noise ratio and image structure similarity values were 31.2575 and 0.8173. On the Set14 dataset, they were 30.8521 and 0.8079, respectively. The multi-scale feature-fusion algorithm was tested on the BSDS100 dataset with an image peak signal-to-noise ratio of 30.2541 and an image structure similarity value of 0.8352. Based on the data presented, it can be concluded that the image correction model constructed in this study has a strong image restoration ability. The reconstructed image has the highest similarity with the real high-resolution image and a low distortion rate. It can achieve the task of repairing problems such as color distortion during image transmission. In addition, this study can provide technical support for similar information correction and restoration work.

Funder

Fund for Development of Young Teachers in Nanjing Tech University Pujiang Institute

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3