ELECTRIC-FIELD-INDUCED CRACK GROWTH AT ELECTRODE EDGE IN PIEZOELECTRIC CERAMICS

Author:

KUSUKAWA KAZUHIRO1

Affiliation:

1. School of Systems Engineering, Kochi University of Technology, Kami, Kochi 7828502, Japan

Abstract

Small crack growth behavior in poled lead zirconate titanate was examined under cyclic electric loading. A crack located at the edge of a partial electrode grew along the electrode boundary during the loading. The crack growth rate decreased with increasing crack length until a non-propagating crack was reached. The growth rate and crack length of the non-propagating crack were affected by the amplitude and bias levels of the electric loading. In the case of high-amplitude loading or negative-biased loading, the crack growth rate varied considerably because of domain switching. Finite element analysis of a three-dimensional permeable crack showed that the mode III stress intensity factor range is independent of crack length, but it decreases as a result of the frictional force of a positive electric field. Fracture surface observations showed that intergranular cracking is dominant near the tip of the non-propagating crack.

Publisher

World Scientific Pub Co Pte Lt

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3