ON NEURON MEMBRANE POTENTIAL DISTRIBUTIONS FOR VOLTAGE AND TIME DEPENDENT CURRENT MODULATION

Author:

SALIG J. B.1,CARPIO-BERNIDO M. V.2,BERNIDO C. C.2,BORNALES J. B.3

Affiliation:

1. Physics Department, Misamis University, 7200 Ozamiz City, Philippines

2. Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, 6308 Bohol, Philippines

3. Physics Department, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Tracking variations of neuronal membrane potential in response to multiple synaptic inputs remains an important open field of investigation since information about neural network behavior and higher brain functions can be inferred from such studies. Much experimental work has been done, with recent advances in multi-electrode recordings and imaging technology giving exciting results. However, experiments have also raised questions of compatibility with available theoretical models. Here we show how methods of modern infinite dimensional analysis allow closed form expressions for important quantities rich in information such as the conditional probability density (cpd). In particular, we use a Feynman integral approach where fluctuations in the dynamical variable are parametrized with Hida white noise variables. The stochastic process described then gives variations in time of the relative membrane potential defined as the difference between the neuron membrane and firing threshold potentials. We obtain the cpd for several forms of current modulation coefficients reflecting the flow of synaptic currents, and which are analogous to drift coefficients in the configuration space Fokker-Planck equation. In particular, we consider cases of voltage and time dependence for current modulation for periodic and non-periodic oscillatory current modulation described by sinusoidal and Bessel functions.

Publisher

World Scientific Pub Co Pte Lt

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3