Nuclear fission investigation with twin ionization chamber

Author:

Zeinalov Sh.1,Sedyshev P.1,Sidorova O.1,Shvetsov V.1

Affiliation:

1. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region 141980, Russian Federation

Abstract

In this paper, we report recent results obtained in the development of digital pulse processing mathematics for prompt fission neutron (PFN) investigations using a twin ionization chamber (TIC) along with a fast neutron time-of-flight detector (ND). Due to some ambiguities in the literature concerning a pulse induction on TIC electrodes by fission fragment (FF) ionization, we first presented a detailed mathematical analysis of FF signal formation on the TIC anode. The analysis was done using the Shockley–Ramo theorem, which gives the relation between charged particle motion between TIC electrodes and the so-called weighting potential. The weighting potential was calculated by direct numerical solution of the Laplace equation (neglecting space charge) for the TIC geometry and ionization caused by FFs. Formulae for GI correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and used in experiments for PFN investigations of two reactions, [Formula: see text]U(n[Formula: see text],f) and [Formula: see text]Cf(sf). Results of the measurements were compared to literature data to demonstrate the feasibility of the new developed techniques. These results were necessary for the development of a new PFN investigation facility consisting of a position sensitive fission fragment detector combined with 32 liquid scintillation neutron detectors.

Publisher

World Scientific Pub Co Pte Lt

Reference13 articles.

1. The Mechanism of Nuclear Fission

2. A twin ionization chamber for fission fragment detection

3. Application of digital signal processing in nuclear spectroscopy

4. L. Svetov, O. Sidorova, Sh. Zeinalov in Proc. XXIV International Seminar on Interaction of Neutrons with Nuclei, JINR E3-2017-8 (Dubna, 2016), p. 430.

5. Nuclear Fission Investigation with Twin Ionization Chamber

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3