Bayesian networks: Theory, applications and sensitivity issues

Author:

Kenett Ron S.12

Affiliation:

1. KPA Ltd., Raanana, Israel

2. University of Turin, Turin, Italy

Abstract

This chapter is about an important tool in the data science workbench, Bayesian networks (BNs). Data science is about generating information from a given data set using applications of statistical methods. The quality of the information derived from data analysis is dependent on various dimensions, including the communication of results, the ability to translate results into actionable tasks and the capability to integrate various data sources [R. S. Kenett and G. Shmueli, On information quality, J. R. Stat. Soc. A 177(1), 3 (2014).] This paper demonstrates, with three examples, how the application of BNs provides a high level of information quality. It expands the treatment of BNs as a statistical tool and provides a wider scope of statistical analysis that matches current trends in data science. For more examples on deriving high information quality with BNs see [R. S. Kenett and G. Shmueli, Information Quality: The Potential of Data and Analytics to Generate Knowledge (John Wiley and Sons, 2016), www.wiley.com/go/information_quality.] The three examples used in the chapter are complementary in scope. The first example is based on expert opinion assessments of risks in the operation of health care monitoring systems in a hospital environment. The second example is from the monitoring of an open source community and is a data rich application that combines expert opinion, social network analysis and continuous operational variables. The third example is totally data driven and is based on an extensive customer satisfaction survey of airline customers. The first section is an introduction to BNs, Sec. 2 provides a theoretical background on BN. Examples are provided in Sec. 3. Section 4 discusses sensitivity analysis of BNs, Sec. 5 lists a range of software applications implementing BNs. Section 6 concludes the chapter.

Publisher

World Scientific Pub Co Pte Lt

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3