Affiliation:
1. Department of Statistics, University of California, Irvine, California 92617, USA
Abstract
The Cox proportional hazards model is commonly used to examine the covariate-adjusted association between a predictor of interest and the risk of mortality for censored survival data. However, it assumes a parametric relationship between covariates and mortality risk though a linear predictor. Generalized additive models (GAMs) provide a flexible extension of the usual linear model and are capable of capturing nonlinear effects of predictors while retaining additivity between the predictor effects. In this paper, we provide a review of GAMs and incorporate bivariate additive modeling into the Cox model for censored survival data with applications to estimating geolocation effects on survival in spatial epidemiologic studies.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献