Dual-Modal Information Bottleneck Network for Seizure Detection

Author:

Wang Jiale1,Ge Xinting1,Shi Yunfeng1,Sun Mengxue1,Gong Qingtao2,Wang Haipeng3,Huang Wenhui1

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China

2. Ulsan Ship and Ocean College, Ludong University, Yantai 264025, P. R. China

3. Institute of Information Fusion, Naval, Aviation University, Yantai 264001, P. R. China

Abstract

In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB .

Funder

National Nature Science Foundation of China

Provincial Nature Science Foundation of Shandong Province of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3