Online Ternary Classification of Covert Speech by Leveraging the Passive Perception of Speech

Author:

Moon Jae1,Chau Tom1

Affiliation:

1. Institute of Biomedical Engineering, University of Toronto, Holland Bloorview Kid’s Rehabilitation Hospital, Toronto, Ontario, Canada

Abstract

Brain–computer interfaces (BCIs) provide communicative alternatives to those without functional speech. Covert speech (CS)-based BCIs enable communication simply by thinking of words and thus have intuitive appeal. However, an elusive barrier to their clinical translation is the collection of voluminous examples of high-quality CS signals, as iteratively rehearsing words for long durations is mentally fatiguing. Research on CS and speech perception (SP) identifies common spatiotemporal patterns in their respective electroencephalographic (EEG) signals, pointing towards shared encoding mechanisms. The goal of this study was to investigate whether a model that leverages the signal similarities between SP and CS can differentiate speech-related EEG signals online. Ten participants completed a dyadic protocol where in each trial, they listened to a randomly selected word and then subsequently mentally rehearsed the word. In the offline sessions, eight words were presented to participants. For the subsequent online sessions, the two most distinct words (most separable in terms of their EEG signals) were chosen to form a ternary classification problem (two words and rest). The model comprised a functional mapping derived from SP and CS signals of the same speech token (features are extracted via a Riemannian approach). An average ternary online accuracy of 75.3% (60% chance level) was achieved across participants, with individual accuracies as high as 93%. Moreover, we observed that the signal-to-noise ratio (SNR) of CS signals was enhanced by perception-covert modeling according to the level of high-frequency ([Formula: see text]-band) correspondence between CS and SP. These findings may lead to less burdensome data collection for training speech BCIs, which could eventually enhance the rate at which the vocabulary can grow.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3