Affiliation:
1. Institute of Biomedical Engineering, University of Toronto, Holland Bloorview Kid’s Rehabilitation Hospital, Toronto, Ontario, Canada
Abstract
Brain–computer interfaces (BCIs) provide communicative alternatives to those without functional speech. Covert speech (CS)-based BCIs enable communication simply by thinking of words and thus have intuitive appeal. However, an elusive barrier to their clinical translation is the collection of voluminous examples of high-quality CS signals, as iteratively rehearsing words for long durations is mentally fatiguing. Research on CS and speech perception (SP) identifies common spatiotemporal patterns in their respective electroencephalographic (EEG) signals, pointing towards shared encoding mechanisms. The goal of this study was to investigate whether a model that leverages the signal similarities between SP and CS can differentiate speech-related EEG signals online. Ten participants completed a dyadic protocol where in each trial, they listened to a randomly selected word and then subsequently mentally rehearsed the word. In the offline sessions, eight words were presented to participants. For the subsequent online sessions, the two most distinct words (most separable in terms of their EEG signals) were chosen to form a ternary classification problem (two words and rest). The model comprised a functional mapping derived from SP and CS signals of the same speech token (features are extracted via a Riemannian approach). An average ternary online accuracy of 75.3% (60% chance level) was achieved across participants, with individual accuracies as high as 93%. Moreover, we observed that the signal-to-noise ratio (SNR) of CS signals was enhanced by perception-covert modeling according to the level of high-frequency ([Formula: see text]-band) correspondence between CS and SP. These findings may lead to less burdensome data collection for training speech BCIs, which could eventually enhance the rate at which the vocabulary can grow.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献