Compact Hardware Synthesis of Stochastic Spiking Neural Networks

Author:

Galán-Prado Fabio1,Morán Alejandro1,Font Joan1,Roca Miquel1,Rosselló Josep L.1

Affiliation:

1. Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Ctra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain

Abstract

Spiking neural networks (SNN) are able to emulate real neural behavior with high confidence due to their bio-inspired nature. Many designs have been proposed for the implementation of SNN in hardware, although the realization of high-density and biologically-inspired SNN is currently a complex challenge of high scientific and technical interest. In this work, we propose a compact digital design for the implementation of high-volume SNN that considers the intrinsic stochastic processes present in biological neurons and enables high-density hardware implementation. The proposed stochastic SNN model (SSNN) is compared with previous SSNN models, achieving a higher processing speed. We also show how the proposed model can be scaled to high-volume neural networks trained by using back propagation and applied to a pattern classification task. The proposed model achieves better results compared with other recently-published SNN models configured with unsupervised STDP learning.

Funder

Regional European Development Funds

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3