How Far can Neural Correlations Reduce Uncertainty? Comparison of Information Transmission Rates for Markov and Bernoulli Processes

Author:

Pregowska Agnieszka1,Kaplan Ehud234,Szczepanski Janusz1

Affiliation:

1. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland

2. Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA

3. Department of Philosophy and History of Science, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic

4. The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic

Abstract

The nature of neural codes is central to neuroscience. Do neurons encode information through relatively slow changes in the firing rates of individual spikes (rate code) or by the precise timing of every spike (temporal code)? Here we compare the loss of information due to correlations for these two possible neural codes. The essence of Shannon’s definition of information is to combine information with uncertainty: the higher the uncertainty of a given event, the more information is conveyed by that event. Correlations can reduce uncertainty or the amount of information, but by how much? In this paper we address this question by a direct comparison of the information per symbol conveyed by the words coming from a binary Markov source (temporal code) with the information per symbol coming from the corresponding Bernoulli source (uncorrelated, rate code). In a previous paper we found that a crucial role in the relation between information transmission rates (ITRs) and firing rates is played by a parameter [Formula: see text], which is the sum of transition probabilities from the no-spike state to the spike state and vice versa. We found that in this case too a crucial role is played by the same parameter [Formula: see text]. We calculated the maximal and minimal bounds of the quotient of ITRs for these sources. Next, making use of the entropy grouping axiom, we determined the loss of information in a Markov source compared with the information in the corresponding Bernoulli source for a given word length. Our results show that in the case of correlated signals the loss of information is relatively small, and thus temporal codes, which are more energetically efficient, can replace rate codes effectively. These results were confirmed by experiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3