Affiliation:
1. Neural Networks Research Centre, Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT , Finland
Abstract
Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article, it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a statistical method for transforming an observed multidimensional random vector into components that are mutually as independent as possible. In this article, a fast fixed-point type algorithm that is capable of separating complex valued, linearly mixed source signals is presented and its computational efficiency is shown by simulations. Also, the local consistency of the estimator given by the algorithm is proved.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
483 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献