Affiliation:
1. Department of Mathematical Sciences, Durham University, Durham DH1 3LE, England
2. Department of Statistics, University of Glasgow, Glasgow G12 8QQ, Scotland
Abstract
We consider principal curves and surfaces in the context of multivariate regression modelling. For predictor spaces featuring complex dependency patterns between the involved variables, the intrinsic dimensionality of the data tends to be very small due to the high redundancy induced by the dependencies. In situations of this type, it is useful to approximate the high-dimensional predictor space through a low-dimensional manifold (i.e., a curve or a surface), and use the projections onto the manifold as compressed predictors in the regression problem. In the case that the intrinsic dimensionality of the predictor space equals one, we use the local principal curve algorithm for the the compression step. We provide a novel algorithm which extends this idea to local principal surfaces, thus covering cases of an intrinsic dimensionality equal to two, which is in principle extendible to manifolds of arbitrary dimension. We motivate and apply the novel techniques using astrophysical and oceanographic data examples.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献