Affiliation:
1. Department of Information Engineering, Binzhou University, Binzhou 256600, P. R. China
Abstract
Electroencephalography (EEG) is an important method to investigate the neurophysiological mechanism underlying epileptogenesis to identify new therapies for the treatment of epilepsy. The neurophysiologically based neural mass model (NMM) can build a bridge between signal processing and neurophysiology, which can be used as a platform to explore the neurophysiological mechanism of epileptogenesis. Most EEG signals cannot be regarded as the outputs of a single NMM with identical model parameters. The outputs of NMM are simple because the diversity of neural signals in the same NMM is ignored. To improve the simulation of EEG signals, a multiple NMM is proposed, the output of which is the linear combination of the outputs of all NMMs. The NMM number is not fixed and is minimized under the premise of guaranteeing the fitting effect. Orthogonal matching pursuit is used to solve a constrained [Formula: see text] norm minimization problem for NMM number and the strength of every NMM. The results showed that the NMM number was significantly lower during the ictal period than during the interictal period, and the strength of major NMMs increased. This indicates that neural masses fuse into fewer larger neural masses with greater strength. The distribution of excitatory and inhibitory strength during the ictal and interictal periods was similar, whereas the excitation/inhibition ratio was higher during the ictal period than during the interictal period.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献