Neurophysiological Analysis of the Genesis Mechanism of EEG During the Interictal and Ictal Periods Using a Multiple Neural Masses Model

Author:

Ma Zhen1

Affiliation:

1. Department of Information Engineering, Binzhou University, Binzhou 256600, P. R. China

Abstract

Electroencephalography (EEG) is an important method to investigate the neurophysiological mechanism underlying epileptogenesis to identify new therapies for the treatment of epilepsy. The neurophysiologically based neural mass model (NMM) can build a bridge between signal processing and neurophysiology, which can be used as a platform to explore the neurophysiological mechanism of epileptogenesis. Most EEG signals cannot be regarded as the outputs of a single NMM with identical model parameters. The outputs of NMM are simple because the diversity of neural signals in the same NMM is ignored. To improve the simulation of EEG signals, a multiple NMM is proposed, the output of which is the linear combination of the outputs of all NMMs. The NMM number is not fixed and is minimized under the premise of guaranteeing the fitting effect. Orthogonal matching pursuit is used to solve a constrained [Formula: see text] norm minimization problem for NMM number and the strength of every NMM. The results showed that the NMM number was significantly lower during the ictal period than during the interictal period, and the strength of major NMMs increased. This indicates that neural masses fuse into fewer larger neural masses with greater strength. The distribution of excitatory and inhibitory strength during the ictal and interictal periods was similar, whereas the excitation/inhibition ratio was higher during the ictal period than during the interictal period.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3