EEG Connectivity Analysis Using Denoising Autoencoders for the Detection of Dyslexia

Author:

Martinez-Murcia Francisco J.12,Ortiz Andres12,Gorriz Juan Manuel32,Ramirez Javier32,Lopez-Abarejo Pedro Javier4,Lopez-Zamora Miguel4,Luque Juan Luis4

Affiliation:

1. Department of Communications Engineering, University of Malaga, Malaga, Spain

2. DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada, Spain

3. Department of Signal Processing, Networking and Communications, University of Granada, Granada, Spain

4. Department of Evolutive Psychology and Education, University of Malaga, Malaga, Spain

Abstract

The Temporal Sampling Framework (TSF) theorizes that the characteristic phonological difficulties of dyslexia are caused by an atypical oscillatory sampling at one or more temporal rates. The LEEDUCA study conducted a series of Electroencephalography (EEG) experiments on children listening to amplitude modulated (AM) noise with slow-rythmic prosodic (0.5–1[Formula: see text]Hz), syllabic (4–8[Formula: see text]Hz) or the phoneme (12–40[Formula: see text]Hz) rates, aimed at detecting differences in perception of oscillatory sampling that could be associated with dyslexia. The purpose of this work is to check whether these differences exist and how they are related to children’s performance in different language and cognitive tasks commonly used to detect dyslexia. To this purpose, temporal and spectral inter-channel EEG connectivity was estimated, and a denoising autoencoder (DAE) was trained to learn a low-dimensional representation of the connectivity matrices. This representation was studied via correlation and classification analysis, which revealed ability in detecting dyslexic subjects with an accuracy higher than 0.8, and balanced accuracy around 0.7. Some features of the DAE representation were significantly correlated ([Formula: see text]) with children’s performance in language and cognitive tasks of the phonological hypothesis category such as phonological awareness and rapid symbolic naming, as well as reading efficiency and reading comprehension. Finally, a deeper analysis of the adjacency matrix revealed a reduced bilateral connection between electrodes of the temporal lobe (roughly the primary auditory cortex) in DD subjects, as well as an increased connectivity of the F7 electrode, placed roughly on Broca’s area. These results pave the way for a complementary assessment of dyslexia using more objective methodologies such as EEG.

Funder

MINECO/FEDER

MICINN "Juan de la Cierva - Formacion"

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3