A BAYESIAN RECURRENT NEURAL NETWORK FOR UNSUPERVISED PATTERN RECOGNITION IN LARGE INCOMPLETE DATA SETS

Author:

ORRE ROLAND12,BATE ANDREW34,NORÉN G. NIKLAS31,SWAHN ERIK3,ARNBORG STEFAN5,EDWARDS I. RALPH3

Affiliation:

1. Mathematical Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

2. NeuroLogic Sweden AB, Johan Enbergs V. 28, SE-171 61 Solna, Sweden

3. WHO Collaborating Centre for International Drug Monitoring, Uppsala Monitoring Centre (UMC), SE-753 20 Uppsala, Sweden

4. Div of Clinical Pharmacology, SE-901 85 Umeå University, Sweden

5. NADA, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract

A recurrent neural network, modified to handle highly incomplete training data is described. Unsupervised pattern recognition is demonstrated in the WHO database of adverse drug reactions. Comparison is made to a well established method, AutoClass, and the performances of both methods is investigated on simulated data. The neural network method performs comparably to AutoClass in simulated data, and better than AutoClass in real world data. With its better scaling properties, the neural network is a promising tool for unsupervised pattern recognition in huge databases of incomplete observations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference21 articles.

1. Distributed data mining in credit card fraud detection

2. B. F. Pennington, Diagnosing Learning Disorders: A Neuropsychological Framework (The Guilford Press, 1991) p. 24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3