Using Explainable Artificial Intelligence in the Clock Drawing Test to Reveal the Cognitive Impairment Pattern

Author:

Jiménez-Mesa Carmen12,Arco Juan E.123,Valentí-Soler Meritxell4,Frades-Payo Belén4,Zea-Sevilla María A.4,Ortiz Andrés13,Ávila-Villanueva Marina4,Castillo-Barnes Diego12,Ramírez Javier12,Del Ser-Quijano Teodoro4,Carnero-Pardo Cristóbal5,Górriz Juan M.12

Affiliation:

1. Data Science and Computational Intelligence (DASCI) Institute, Spain

2. Department of Signal Theory, Networking and Communications, University of Granada, Granada 18010, Spain

3. Department of Communications Engineering, University of Malaga, Malaga 29010, Spain

4. Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain

5. FIDYAN Neurocenter, Spain

Abstract

The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that cannot be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper. There are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on artificial intelligence (AI) methods to analyze the CDT and obtain an automatic diagnosis of cognitive impairment (CI). This system employs a preprocessing pipeline in which the clock is detected, centered and binarized to decrease the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN) to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient’s cognitive status. Performance is evaluated in a real context where patients with CI and controls have been classified by clinical experts in a balanced sample size of [Formula: see text] drawings. The proposed method provides an accuracy of [Formula: see text] in the binary case-control classification task, with an AUC of [Formula: see text]. These results are indeed relevant considering the use of the classic version of the CDT. The large size of the sample suggests that the method proposed has a high reliability to be used in clinical contexts and demonstrates the suitability of CAD systems in the CDT assessment process. Explainable artificial intelligence (XAI) methods are applied to identify the most relevant regions during classification. Finding these patterns is extremely helpful to understand the brain damage caused by CI. A validation method using resubstitution with upper bound correction in a machine learning approach is also discussed.

Funder

FEDER

Una manera de hacer Europa

Junta de Andalucia

Ministerio de Universidades

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3