Affiliation:
1. Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Via All’Opera Pia 13, 16145 Genova, Italy
Abstract
The depth cue is a fundamental piece of information for artificial and living beings who interact with the surrounding environment in order to handle objects and to avoid obstacles: in such situations, the disparity patterns, which arise when agents fixate objects, are vector fields. We propose a biologically-inspired computational model to estimate dense horizontal and vertical disparity maps by exploiting the cortical paradigms of the primate visual system: in particular, we aim to model the disparity sensitivity of the V1–MT visual pathway. The proposed model is based on a first processing stage composed of a bank of spatial band-pass filters and a static nonlinearity, mimicking complex binocular cells. Then, subsequent pooling stages and decoding strategies allow the model to estimate the vector disparity, after having represented it as a population of MT-like units. We assess the proposed model by using standard benchmarking stereo images, the Middlebury dataset, and specific stereo images that have horizontal and vertical disparities, which characterize the stimuli produced by active vision systems. Moreover, we systemically analyze how the different processing stages affect the model performance, and we discuss their implications for the neural modeling.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献