Efficient EEG Feature Learning Model Combining Random Convolutional Kernel with Wavelet Scattering for Seizure Detection

Author:

Liu Yasheng1,Jiang Yonghui1,Liu Jie2,Li Jie1,Liu Mingze1,Nie Weiwei3,Yuan Qi1ORCID

Affiliation:

1. Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China

2. Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan 250014, P. R. China

3. The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan 250014, P. R. China

Abstract

Automatic seizure detection has significant value in epilepsy diagnosis and treatment. Although a variety of deep learning models have been proposed to automatically learn electroencephalography (EEG) features for seizure detection, the generalization performance and computational burden of such deep models remain the bottleneck of practical application. In this study, a novel lightweight model based on random convolutional kernel transform (ROCKET) is developed for EEG feature learning for seizure detection. Specifically, random convolutional kernels are embedded into the structure of a wavelet scattering network instead of original wavelet transform convolutions. Then the significant EEG features are selected from the scattering coefficients and convolutional outputs by analysis of variance (ANOVA) and minimum redundancy-maximum relevance (MRMR) methods. This model not only preserves the merits of the fast-training process from ROCKET, but also provides insight into seizure detection by retaining only the helpful channels. The extreme gradient boosting (XGboost) classifier was combined with this EEG feature learning model to build a comprehensive seizure detection system that achieved promising epoch-based results, with over 90% of both sensitivity and specificity on the scalp and intracranial EEG databases. The experimental comparisons showed that the proposed method outperformed other state-of-the-art methods for cross-patient and patient-specific seizure detection.

Funder

Shandong Provincial Natural Science Foundation

The China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3