BURSTING NEAR BAUTIN BIFURCATION IN A NEURAL NETWORK WITH DELAY COUPLING

Author:

SONG ZIGEN1,XU JIAN1

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China

Abstract

Bursting behavior is one of the most important firing activities of neural system and plays an important role in signal encoding and transmission. In the present paper, a neural network with delay coupling is modeled to investigate the generation mechanism of bursting behavior. The Andronov-Hopf bifurcation is firstly studied and then the degenerated Andronov-Hopf bifurcation, namely Bautin bifurcation, is analyzed with the external input varying. Classifying dynamics in the neighborhood of the Bautin bifurcation, we obtain the bifurcation sets where the supercritical/subcritical Andronov-Hopf, or the fold limit cycle bifurcation may happen in the system under consideration. For a periodic disturbance occurring in the neighborhood of the Bautin bifurcation, it is seen that the Andronov-Hopf bifurcation and fold limit cycle bifurcation may lead to the transition from quiescent state to firing activities. Complex bursting phenomena, including Hopf/Hopf bursting, Hopf/Fold cycle bursting, SubHopf/Hopf bursting and SubHopf/Fold cycle bursting are found in the firing area. The results show that the dynamical properties of different burstings are related to the dynamical behaviors derived from the bifurcations of the system. Finally, it is seen that the bursting disappears but the periodic spiking appears in the delayed neural network for large values of delay.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3