A Swallowing Decoder Based on Deep Transfer Learning: AlexNet Classification of the Intracranial Electrocorticogram

Author:

Hashimoto Hiroaki123,Kameda Seiji1,Maezawa Hitoshi1,Oshino Satoru4,Tani Naoki4,Khoo Hui Ming4,Yanagisawa Takufumi4,Yoshimine Toshiki3,Kishima Haruhiko4,Hirata Masayuki134

Affiliation:

1. Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

2. Department of Neurosurgery, Otemae Hospital, Chuo-Ku Otemae 1-5-34, Osaka, Osaka 540-0008, Japan

3. Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

4. Department of Neurosurgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

Abstract

To realize a brain–machine interface to assist swallowing, neural signal decoding is indispensable. Eight participants with temporal-lobe intracranial electrode implants for epilepsy were asked to swallow during electrocorticogram (ECoG) recording. Raw ECoG signals or certain frequency bands of the ECoG power were converted into images whose vertical axis was electrode number and whose horizontal axis was time in milliseconds, which were used as training data. These data were classified with four labels (Rest, Mouth open, Water injection, and Swallowing). Deep transfer learning was carried out using AlexNet, and power in the high-[Formula: see text] band (75–150[Formula: see text]Hz) was the training set. Accuracy reached 74.01%, sensitivity reached 82.51%, and specificity reached 95.38%. However, using the raw ECoG signals, the accuracy obtained was 76.95%, comparable to that of the high-[Formula: see text] power. We demonstrated that a version of AlexNet pre-trained with visually meaningful images can be used for transfer learning of visually meaningless images made up of ECoG signals. Moreover, we could achieve high decoding accuracy using the raw ECoG signals, allowing us to dispense with the conventional extraction of high-[Formula: see text] power. Thus, the images derived from the raw ECoG signals were equivalent to those derived from the high-[Formula: see text] band for transfer deep learning.

Funder

JSPS KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3