Classification of Low and High Schizotypy Levels via Evaluation of Brain Connectivity

Author:

Zandbagleh Ahmad1,Mirzakuchaki Sattar1,Daliri Mohammad Reza1,Premkumar Preethi2,Sanei Saeid3

Affiliation:

1. School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Division of Psychology, School of Applied Sciences, London Southbank University, London, UK

3. School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK

Abstract

Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high versus low schizotypy (LS) status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy (HS) and 11 LS participants during an emotional auditory odd-ball task. The brain connectivity signals for machine learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The values of DTF power in five standard frequency bands are used as features. The support vector machines (SVMs) revealed significant differences between HS and LS. The accuracy, specificity, and sensitivity of the results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may lead to the early identification of schizophrenia and other spectrum disorders.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3