Neurons with Multiplicative Interactions of Nonlinear Synapses

Author:

Todo Yuki1,Tang Zheng2,Todo Hiroyoshi3,Ji Junkai2,Yamashita Kazuya4

Affiliation:

1. Faculty of Electrical and Computer Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan

2. Department of Intelligence Information Systems, University of Toyama, 3190, Gofuku, Toyama 930-8555, Japan

3. Department of Pharmaceutical Technology, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan

4. Information Technology Center, University of Toyama, 3190, Gofuku, Toyama 930-8555, Japan

Abstract

Neurons are the fundamental units of the brain and nervous system. Developing a good modeling of human neurons is very important not only to neurobiology but also to computer science and many other fields. The McCulloch and Pitts neuron model is the most widely used neuron model, but has long been criticized as being oversimplified in view of properties of real neuron and the computations they perform. On the other hand, it has become widely accepted that dendrites play a key role in the overall computation performed by a neuron. However, the modeling of the dendritic computations and the assignment of the right synapses to the right dendrite remain open problems in the field. Here, we propose a novel dendritic neural model (DNM) that mimics the essence of known nonlinear interaction among inputs to the dendrites. In the model, each input is connected to branches through a distance-dependent nonlinear synapse, and each branch performs a simple multiplication on the inputs. The soma then sums the weighted products from all branches and produces the neuron’s output signal. We show that the rich nonlinear dendritic response and the powerful nonlinear neural computational capability, as well as many known neurobiological phenomena of neurons and dendrites, may be understood and explained by the DNM. Furthermore, we show that the model is capable of learning and developing an internal structure, such as the location of synapses in the dendritic branch and the type of synapses, that is appropriate for a particular task — for example, the linearly nonseparable problem, a real-world benchmark problem — Glass classification and the directional selectivity problem.

Funder

JSPS KAKENHI

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3