Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

Author:

Garrido Jesús A.1,Luque Niceto R.23,Tolu Silvia4,D’Angelo Egidio56

Affiliation:

1. Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain

2. Institut National de la Santé et de la Recherche Médicale, U968 and Centre National de la Recherche Scientifique, UMR_7210, Institut de la Vision, rue Moreau, 17, Paris, F75012, France

3. Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR_S 968, Place Jussieu, 4, Paris, F75252, France

4. Center for Playware, Department of Electrical Engineering, Technical University of Denmark, Richard Petersens Plads, Elektrovej, Building 326, Lyngby, Copenhagen, 2800, Denmark

5. Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini, 6, Pavia, I27100, Italy

6. Brain Connectivity Center, Istituto Neurologico IRCCS Fondazione Casimiro Mondino, Via Mondino, 2 Pavia, I27100, Italy

Abstract

The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron–interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3