ANALYSIS OF TRAINING SET PARALLELISM FOR BACKPROPAGATION NEURAL NETWORKS

Author:

KING FOO SHOU1,SARATCHANDRAN P.1,SUNDARARAJAN N.1

Affiliation:

1. Centre for Signal Processing, School of Electrical & Electronic Eng., Nanyang Technological University, Singapore

Abstract

Training set parallelism and network based parallelism are two popular paradigms for parallelizing a feedforward (artificial) neural network. Training set parallelism is particularly suited to feedforward neural networks with backpropagation learning where the size of the training set is large in relation to the size of the network. This paper analyzes training set parallelism for feedforward neural networks when implemented on a transputer array configured in a pipelined ring topology. Theoretical expressions for the time per epoch (iteration) and optimal size of a processor network are derived when the training set is equally distributed among the processing nodes. These show that the speed up is a function of the number of patterns per processor, communication overhead per epoch and the total number of processors in the topology. Further analysis of how to optimally distribute the training set on a given processor network when the number of patterns in the training set is not an integer multiple of the number of processors, is also carried out. It is shown that optimal allocation of patterns in such cases is a mixed integer programming problem. Using this analysis it is found that equal distribution of training patterns among the processors is not the optimal way to allocate the patterns even when the training set is an integer multiple of the number of processors. Extension of the analysis to processor networks comprising processors of different speeds is also carried out. Experimental results from a T805 transputer array are presented to verify all the theoretical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3