Affiliation:
1. School of Automation, Chengdu University of Information Technology, Chengdu 610225, China
2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
Abstract
Magnetic Resonance Imaging (MRI) is an important diagnostic technique for brain tumors due to its ability to generate images without tissue damage or skull artifacts. Therefore, MRI images are widely used to achieve the segmentation of brain tumors. This paper is the first attempt to discuss the use of optimization spiking neural P systems to improve the threshold segmentation of brain tumor images. To be specific, a threshold segmentation approach based on optimization numerical spiking neural P systems with adaptive multi-mutation operators (ONSNPSamos) is proposed to segment brain tumor images. More specifically, an ONSNPSamo with a multi-mutation strategy is introduced to balance exploration and exploitation abilities. At the same time, an approach combining the ONSNPSamo and connectivity algorithms is proposed to address the brain tumor segmentation problem. Our experimental results from CEC 2017 benchmarks (basic, shifted and rotated, hybrid, and composition function optimization problems) demonstrate that the ONSNPSamo is better than or close to 12 optimization algorithms. Furthermore, case studies from BraTS 2019 show that the approach combining the ONSNPSamo and connectivity algorithms can more effectively segment brain tumor images than most algorithms involved.
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Program
Research Fund of Chengdu University of Information Technology
Publisher
World Scientific Pub Co Pte Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献