Affiliation:
1. Department of Information Engineering, Binzhou University, Binzhou 256600, P. R. China
Abstract
Epileptic seizures arise from synchronous firing of multiple spatially separated neural masses; therefore, many synchrony measures are used for seizure detection and characterization. However, synchrony measures reflect only the overall interaction strength among populations of neurons but cannot reveal the coupling strengths among individual populations, which is more important for seizure control. The concepts of reachability and reachable cluster were proposed to denote the coupling strengths of a set of neural masses. Here, we describe a seizure control method based on coupling strengths using combination convolutional neural network (CCNN) modeling. The neurophysiologically based neural mass model (NMM), which can bridge signal processing and neurophysiology, was used to simulate the proposed controller. Although the adjacency matrix and reachability matrix could not be identified perfectly, the vast majority of adjacency values were identified, reaching 95.64% using the CCNN with an optimal threshold. For cases of discrete and continuous coupling strengths, the proposed controller maintained the average reachable cluster strengths at about 0.1, indicating effective seizure control.
Funder
the Ministry of Education of the People's Republic of China
Natural Science Foundation of Shandong
China Spark Program
Binzhou University Scientific Research Fund Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献