Multiscaled Neural Autoregressive Distributed Lag: A New Empirical Mode Decomposition Model for Nonlinear Time Series Forecasting

Author:

Saâdaoui Foued1,Messaoud Othman Ben2

Affiliation:

1. Department of Statistics, Faculty of Sciences, King Abdulaziz University, P. O. BOX 80203, Jeddah 21589, Saudi Arabia

2. Faculty of Economics and Management (FSEGS), University of Sfax, Route de l’Aéroport Km 4, Sfax 3018, Tunisia

Abstract

Forecasting has always been the cornerstone of machine learning and statistics. Despite the great evolution of the time series theory, forecasters are still in the hunt for better models to make more accurate decisions. The huge advances in neural networks over the last years has led to the emergence of a new generation of effective models replacing classic econometric models. It is in this direction that we propose, in this paper, a new multiscaled Feedforward Neural Network (FNN), with the aim of forecasting multivariate time series. This new model, called Empirical Mode Decomposition (EMD)-based Neural ARDL, is inspired from the well-known Autoregressive Distributed Lag (ARDL) model being our proposal founded upon the concepts of nonlinearity, EMD-multiresolution and neural networks. These features give the model the ability to effectively capture many nonlinear patterns like the ones often present in econophysical time series, such as nonlinear trends, seasonal effects, long-range dependency, etc. The proposed algorithm can be summarized into the following four basic tasks: (i) EMD breaking-down multivariate time series into different resolution levels, (ii) feeding EMD components from the same levels into a number of feedforward neural ARDL models, (iii) from one level to the next, extrapolating the component corresponding to the response variable (scalar output) a number of steps ahead, and finally, (iv) recombining level-by-level forecasts into a single output. An optimal learning scheme is rigorously designed for efficiently training the new proposed architecture. The approach is finally tested and compared to a number of powerful benchmark models, where experiments are conducted on real-world data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3