ON THE SEGMENTATION AND CLASSIFICATION OF HAND RADIOGRAPHS

Author:

DAVIS LUKE M.1,THEOBALD BARRY-JOHN1,LINES JASON1,TOMS ANDONI2,BAGNALL ANTHONY1

Affiliation:

1. School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom

2. Norwich Radiology Academy, Norfolk and Norwich University Hospital, Norwich, Norfolk, NR4 7UB, United Kingdom

Abstract

This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Euler State Networks: Non-dissipative Reservoir Computing;Neurocomputing;2024-04

2. Robust functional logistic regression;Advances in Data Analysis and Classification;2024-02-12

3. ClaSP: parameter-free time series segmentation;Data Mining and Knowledge Discovery;2023-02-15

4. An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation;International Journal of Neural Systems;2022-07-30

5. Minimal Euler State Networks;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3