Corticomotoneuronal Model for Intraoperative Neurophysiological Monitoring During Direct Brain Stimulation

Author:

Gomez-Tames Jose1,Hirata Akimasa1,Tamura Manabu23,Muragaki Yoshihiro23

Affiliation:

1. Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan

2. Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan

3. Department of Neurosurgery, Neurological Institute, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan

Abstract

Intraoperative neurophysiological monitoring during brain surgery uses direct cortical stimulation to map the motor cortex by recording muscle activity induced by the excitation of alpha motor neurons (MNs). Computational models have been used to understand local brain stimulation. However, a computational model revealing the stimulation process from the cortex to MNs has not yet been proposed. Thus, the aim of the current study was to develop a corticomotoneuronal (CMN) model to investigate intraoperative stimulation during surgery. The CMN combined the following three processes into one system for the first time: (1) induction of an electric field in the brain based on a volume conductor model; (2) activation of pyramidal neuron (PNs) with a compartment model; and (3) formation of presynaptic connections of the PNs to MNs using a conductance-based synaptic model coupled with a spiking model. The implemented volume conductor model coupled with the axon model agreed with experimental strength-duration curves. Additionally, temporal/spatial and facilitation effects of CMN synapses were implemented and verified. Finally, the integrated CMN model was verified with experimental data. The results demonstrated that our model was necessary to describe the interaction between frequency and pulses to assess the difference between low-frequency and multi-pulse high-frequency stimulation in cortical stimulation. The proposed model can be used to investigate the effect of stimulation parameters on the cortex to optimize intraoperative monitoring.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3