SELF-SUPERVISED MRI TISSUE SEGMENTATION BY DISCRIMINATIVE CLUSTERING

Author:

GONÇALVES NICOLAU1,NIKKILÄ JANNE2,VIGÁRIO RICARDO3

Affiliation:

1. Department of Information and Computer Science, Aalto University School of Science, P. O. Box 15400, FI-00076 Aalto, Espoo, Finland

2. Finnish Red Cross Blood Service, Helsinki, Finland

3. Department of Information and Computer Science, Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Espoo, Finland

Abstract

The study of brain lesions can benefit from a clear identification of transitions between healthy and pathological tissues, through the analysis of brain imaging data. Current signal processing methods, able to address these issues, often rely on strong prior information. In this article, a new method for tissue segmentation is proposed. It is based on a discriminative strategy, in a self-supervised machine learning approach. This method avoids the use of prior information, which makes it very versatile, and able to cope with different tissue types. It also returns tissue probabilities for each voxel, crucial for a good characterization of the evolution of brain lesions. Simulated as well as real benchmark data were used to validate the accuracy of the method and compare it against other segmentation algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3