Encrypted Image Classification with Low Memory Footprint Using Fully Homomorphic Encryption

Author:

Rovida Lorenzo1ORCID,Leporati Alberto1ORCID

Affiliation:

1. Department of Informatics, Systems and Communication, University of Milan-Bicocca, Viale Sarca, 336, Milan, 20126, Italy

Abstract

Classifying images has become a straightforward and accessible task, thanks to the advent of Deep Neural Networks. Nevertheless, not much attention is given to the privacy concerns associated with sensitive data contained in images. In this study, we propose a solution to this issue by exploring an intersection between Machine Learning and cryptography. In particular, Fully Homomorphic Encryption (FHE) emerges as a promising solution, as it enables computations to be performed on encrypted data. We therefore propose a Residual Network implementation based on FHE which allows the classification of encrypted images, ensuring that only the user can see the result. We suggest a circuit which reduces the memory requirements by more than [Formula: see text] compared to the most recent works, while maintaining a high level of accuracy and a short computational time. We implement the circuit using the well-known Cheon–Kim–Kim–Song (CKKS) scheme, which enables approximate encrypted computations. We evaluate the results from three perspectives: memory requirements, computational time and calculations precision. We demonstrate that it is possible to evaluate an encrypted ResNet20 in less than five minutes on a laptop using approximately 15[Formula: see text]GB of memory, achieving an accuracy of 91.67% on the CIFAR-10 dataset, which is almost equivalent to the accuracy of the plain model (92.60%).

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the tradeoff between data privacy and utility with a clinical data analysis use case;BMC Medical Informatics and Decision Making;2024-05-30

2. Private Inference on Layered Spiking Neural P Systems;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3