Direct Causal Networks for the Study of Transcranial Magnetic Stimulation Effects on Focal Epileptiform Discharges

Author:

Kugiumtzis Dimitris1,Kimiskidis Vasilios K.2

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

2. Laboratory of Clinical Neurophysiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Abstract

Background: Transcranial magnetic stimulation (TMS) can have inhibitory effects on epileptiform discharges (EDs) of patients with focal seizures. However, the brain connectivity before, during and after EDs, with or without the administration of TMS, has not been extensively explored. Objective: To investigate the brain network of effective connectivity during ED with and without TMS in patients with focal seizures. Methods: For the effective connectivity a direct causality measure is applied termed partial mutual information from mixed embedding (PMIME). TMS-EEG data from two patients with focal seizures were analyzed. Each EEG record contained a number of EDs in the majority of which TMS was administered over the epileptic focus. As a control condition, sham stimulation over the epileptogenic zone or real TMS at a distance from the epileptic focus was also performed. The change in brain connectivity structure was investigated from the causal networks formed at each sliding window. Conclusion: The PMIME could detect distinct changes in the network structure before, within, and after ED. The administration of real TMS over the epileptic focus, in contrast to sham stimulation, terminated the ED prematurely in a node-specific manner and regained the network structure as if it would have terminated spontaneously.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3