Latent Phase Detection of Hypoxic-Ischemic Spike Transients in the EEG of Preterm Fetal Sheep Using Reverse Biorthogonal Wavelets & Fuzzy Classifier

Author:

Abbasi Hamid1,Bennet Laura2,Gunn Alistair J.2,Unsworth Charles P.1

Affiliation:

1. Department of Engineering Science, The University of Auckland, Auckland, New Zealand

2. Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

Abstract

Hypoxic-ischemic (HI) studies in preterms lack reliable prognostic biomarkers for diagnostic tests of HI encephalopathy (HIE). Our group’s observations from in utero fetal sheep models suggest that potential biomarkers of HIE in the form of developing HI micro-scale epileptiform transients emerge along suppressed EEG/ECoG background during a latent phase of 6–7[Formula: see text]h post-insult. However, having to observe for the whole of the latent phase disqualifies any chance of clinical intervention. A precise automatic identification of these transients can help for a well-timed diagnosis of the HIE and to stop the spread of the injury before it becomes irreversible. This paper reports fusion of Reverse-Biorthogonal Wavelets with Type-1 Fuzzy classifiers, for the accurate real-time automatic identification and quantification of high-frequency HI spike transients in the latent phase, tested over seven in utero preterm sheep. Considerable high performance of 99.78 ± 0.10% was obtained from the Rbio-Wavelet Type-1 Fuzzy classifier for automatic identification of HI spikes tested over 42[Formula: see text]h of high-resolution recordings (sampling-freq:1024[Formula: see text]Hz). Data from post-insult automatic time-localization of high-frequency HI spikes reveals a promising trend in the average rate of the HI spikes, even in the animals with shorter occlusion periods, which highlights considerable higher number of transients within the first 2[Formula: see text]h post-insult.

Funder

the Health Research Council of New Zealand

the Auckland Medical Research Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3