Fusing Self-Organized Neural Network and Keypoint Clustering for Localized Real-Time Background Subtraction

Author:

Avola Danilo1,Bernardi Marco1,Cinque Luigi1,Massaroni Cristiano1,Foresti Gian Luca2

Affiliation:

1. Department of Computer Science, Sapienza University, Via Salaria 113, 00198 Rome, Italy

2. Department of Computer Science, Mathematics and Physics, University of Udine, Via delle Scienze, 33100 Udine, Italy

Abstract

Moving object detection in video streams plays a key role in many computer vision applications. In particular, separation between background and foreground items represents a main prerequisite to carry out more complex tasks, such as object classification, vehicle tracking, and person re-identification. Despite the progress made in recent years, a main challenge of moving object detection still regards the management of dynamic aspects, including bootstrapping and illumination changes. In addition, the recent widespread of Pan–Tilt–Zoom (PTZ) cameras has made the management of these aspects even more complex in terms of performance due to their mixed movements (i.e. pan, tilt, and zoom). In this paper, a combined keypoint clustering and neural background subtraction method, based on Self-Organized Neural Network (SONN), for real-time moving object detection in video sequences acquired by PTZ cameras is proposed. Initially, the method performs a spatio-temporal tracking of the sets of moving keypoints to recognize the foreground areas and to establish the background. Then, it adopts a neural background subtraction, localized in these areas, to accomplish a foreground detection able to manage bootstrapping and gradual illumination changes. Experimental results on three well-known public datasets, and comparisons with different key works of the current literature, show the efficiency of the proposed method in terms of modeling and background subtraction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3