Variable Projection Support Vector Machines and Some Applications Using Adaptive Hermite Expansions

Author:

Dózsa Tamás1ORCID,Deuschle Federico2,Cornelis Bram2,Kovács Péter3ORCID

Affiliation:

1. Department of Numerical Analysis, HUN-REN Institute for Computer Science and Control, Eötvös Loránd University, Budapest H-1111, Hungary

2. Siemens Digital Industries Software, 68 Interleuvenlaan KU Leuven, Department of Mechanical Engineering, Leuven B-3001, Belgium

3. Department of Numerical Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/C Budapest 1117, Hungary

Abstract

In this paper, we develop the so-called variable projection support vector machine (VP-SVM) algorithm that is a generalization of the classical SVM. In fact, the VP block serves as an automatic feature extractor to the SVM, which are trained simultaneously. We consider the primal form of the arising optimization task and investigate the use of nonlinear kernels. We show that by choosing the so-called adaptive Hermite function system as the basis of the orthogonal projections in our classification scheme, several real-world signal processing problems can be successfully solved. In particular, we test the effectiveness of our method in two case studies corresponding to anomaly detection. First, we consider the detection of abnormal peaks in accelerometer data caused by sensor malfunction. Then, we show that the proposed classification algorithm can be used to detect abnormalities in ECG data. Our experiments show that the proposed method produces comparable results to the state-of-the-art while retaining desired properties of SVM classification such as light weight architecture and interpretability. We implement the proposed method on a microcontroller and demonstrate its ability to be used for real-time applications. To further minimize computational cost, discrete orthogonal adaptive Hermite functions are introduced for the first time.

Funder

the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund

the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

the European Commission for its support of the Marie Sklodowska Curie program through the H2020 ETN MOIRA project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3