Multiple-in-Single-Out Object Detector Leveraging Spiking Neural Membrane Systems and Multiple Transformers

Author:

Jiang Zhengyuan1ORCID,Sun Siyan1ORCID,Peng Hong1ORCID,Liu Zhicai1ORCID,Wang Jun2ORCID

Affiliation:

1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China

2. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China

Abstract

Most existing multi-scale object detectors depend on multi-level feature maps. The Feature Pyramid Networks (FPN) is a significant architecture for object detection that utilizes these multi-level feature maps. However, the use of FPN also increases the detector’s complexity. For object detection methods that only use a single-level feature map, the detection performance is limited to some extent because the single-level feature map cannot balance deep semantic information and shallow detail information. We introduce a novel detector — the Spiking Neural P Multiple-in-Single-out (SNPMiSo) detector to address these challenges. The SNPMiSo detector is constructed based on SNP-like neurons. In SNPMiSo, we employ two kinds of Transformers to boost the important features across different-level feature maps separately. After enhancing the features, we use an incremental upsampling module to upsample and merge the two feature maps. This combined feature map is input into the NAF dilated residual module and the NAF dual-branch detection head. This process allows us to extract multi-scale features and carry out detection tasks. Our tests show promising results: On the COCO dataset, SNPMiSo attains an Average Precision (AP) of 38.7, an improvement of 1.0 AP over YOLOF. In addition, SNPMiSo demonstrates a quicker detection speed, outperforming some advanced multi-level and single-level object detectors.

Funder

the National Natural Science Foundation of China

the Research Fund of Sichuan Science and Technology Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3