Epileptic Seizure Detection with EEG Textural Features and Imbalanced Classification Based on EasyEnsemble Learning

Author:

Sun Chengfa1,Cui Hui2,Zhou Weidong3,Nie Weiwei4,Wang Xiuying5,Yuan Qi1

Affiliation:

1. Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China

2. Department of Computer Science and Information Technology, La Trobe University, Bundoora, VIC 3083, Australia

3. School of Microelectronics, Shandong University, Jinan 250101, P. R. China

4. Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan 250014, P. R. China

5. School of Computer Science, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

Imbalance data classification is a challenging task in automatic seizure detection from electroencephalogram (EEG) recordings when the durations of non-seizure periods are much longer than those of seizure activities. An imbalanced learning model is proposed in this paper to improve the identification of seizure events in long-term EEG signals. To better represent the underlying microstructure distributions of EEG signals while preserving the non-stationary nature, discrete wavelet transform (DWT) and uniform 1D-LBP feature extraction procedure are introduced. A learning framework is then designed by the ensemble of weakly trained support vector machines (SVMs). Under-sampling is employed to split the imbalanced seizure and non-seizure samples into multiple balanced subsets where each of them is utilized to train an individual SVM classifier. The weak SVMs are incorporated to build a strong classifier which emphasizes seizure samples and in the meantime analyzing the imbalanced class distribution of EEG data. Final seizure detection results are obtained in a multi-level decision fusion process by considering temporal and frequency factors. The model was validated over two long-term and one short-term public EEG databases. The model achieved a [Formula: see text]-mean of 97.14% with respect to epoch-level assessment, an event-level sensitivity of 96.67%, and a false detection rate of 0.86/h on the long-term intracranial database. An epoch-level [Formula: see text]-mean of 95.28% and event-level false detection rate of 0.81/h were yielded over the long-term scalp database. The comparisons with 14 published methods demonstrated the improved detection performance for imbalanced EEG signals and the generalizability of the proposed model.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3