Performance Evaluation of Error-Correcting Output Coding Based on Noisy and Noiseless Binary Classifiers

Author:

Kumoi Gendo1,Yagi Hideki2,Kobayashi Manabu1,Goto Masayuki3,Hirasawa Shigeichi1

Affiliation:

1. Center for Data Science, Waseda University, 1-6-1, Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

2. Department of Computer and Network Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

3. School of Creative Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

Error-correcting output coding (ECOC) is a method for constructing a multi-valued classifier using a combination of given binary classifiers. ECOC can estimate the correct category by other binary classifiers even if the output of some binary classifiers is incorrect based on the framework of the coding theory. The code word table representing the combination of these binary classifiers is important in ECOC. ECOC is known to perform well experimentally on real data. However, the complexity of the classification problem makes it difficult to analyze the classification performance in detail. For this reason, theoretical analysis of ECOC has not been conducted. In this study, if a binary classifier outputs the estimated posterior probability with errors, then this binary classifier is said to be noisy. In contrast, if a binary classifier outputs the true posterior probability, then this binary classifier is said to be noiseless. For a theoretical analysis of ECOC, we discuss the optimality for the code word table with noiseless binary classifiers and the error rate for one with noisy binary classifiers. This evaluation result shows that the Hamming distance of the code word table is an important indicator.

Funder

JSPS KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3