Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach

Author:

Yousif Mosab A. A.12ORCID,Ozturk Mahmut3ORCID

Affiliation:

1. Department of Biomedical Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey

2. Department of Electronics Engineering, University of Gezira, Wad-Madani, Sudan

3. Department of Electrical and Electronics Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey

Abstract

ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.

Funder

Scientific Research Projects Coordination Unit of Istanbul University — Cerrahpasa

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3