Modeling Coupled Heat and Mass Transfer in Peristaltic Cylindrical Flow of Robertson-Stiff Fluid

Author:

Lahlou N.1,Rachid H.1,Ouazzani M. T.1

Affiliation:

1. Laboratory of Mechanics, Department of Physics, Faculty of Sciences Ain Chock, University Hassan II, Maarif, Casablanca, BP 5366, Morocco

Abstract

The Robertson–Stiff fluid (RS) is a yield-pseudo-plastic model which has been used to describe the rheological properties of drilling fluids, cement slurries and bentonite suspensions. Experimentally, several rheological data showed that this model provides more consistently accurate descriptions of the rheology of such fluids than other viscoplastic models. This result motivates us to study theoretically the peristaltic transport for this shear-thinning model and for other viscoplastic models in the presence of heat and mass transfer in a cylindrical tube. For long wavelength and low Reynolds number approximations, an analytical solution is obtained. The results showed that the velocity and the temperature decrease with increasing the yield parameter and the power index while they increase with the increase in the occlusion parameter. We also observed an opposite behavior of the concentration versus these physical parameters. Moreover, all these parameters enhance the mechanical efficiency of pumping. In addition, the comparison shows that the velocity, temperature and the absolute value of concentration are greater for the proposed model than those of Herschel–Bulkley, Bingham and Casson models, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3